Linear-quadratic infinite time horizon optimal control for differential-algebraic equations - a new algebraic criterion

نویسنده

  • T. Reis
چکیده

with x0 ∈ R, B ∈ R and E,A ∈ R, such that the pencil sE − A ∈ R[s] is regular, that is, det(sE −A) 6= 0. For systems governed by ordinary differentialequations (that is, E is the identity matrix), a rigorous analysis of this problem has its origin in the 60s of the 20th century [6, 8–10, 13, 15, 21]. In particular, the article [20] by Willems gives a complete characterization of linear-quadratic optimal control of ordinary systems by means of solvability of an associated algebraic Riccati equation and feasibility of a certain linear matrix inequality. Mainly two approaches to the generalization of this theory exist for the differential-algebraic case: The articles [11,12,14] by Kawamoto et al. and Kurina on the one hand, and [4] by Bender and Laub on the other hand introduce different

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls

The optimal control problem in a finite time horizon with an indefinite quadratic cost function for a linear system subject to multiplicative noise on both the state and control can be solved via a constrained matrix differential Riccati equation. In this paper, we provide general necessary and sufficient conditions for the solvability of this generalized differential Riccati equation. Furtherm...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

Linear quadratic problems with indefinite cost for discrete time systems

This paper deals with the discrete-time infinite-horizon linear quadratic problem with indefinite cost criterion. Given a discrete-time linear system, an indefinite costfunctional and a linear subspace of the state space, we consider the problem of minimizing the costfunctional over all inputs that force the state trajectory to converge to the given subspace. We give a geometric characterizatio...

متن کامل

The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint

In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012